Docosahexaenoic (DHA) modulates phospholipid-hydroperoxide glutathione peroxidase (Gpx4) gene expression to ensure self-protection from oxidative damage in hippocampal cells

نویسندگان

  • Verónica Casañas-Sánchez
  • José A. Pérez
  • Noemí Fabelo
  • David Quinto-Alemany
  • Mario L. Díaz
چکیده

Docosahexaenoic acid (DHA, 22:6n-3) is a unique polyunsaturated fatty acid particularly abundant in nerve cell membrane phospholipids. DHA is a pleiotropic molecule that, not only modulates the physicochemical properties and architecture of neuronal plasma membrane, but it is also involved in multiple facets of neuronal biology, from regulation of synaptic function to neuroprotection and modulation of gene expression. As a highly unsaturated fatty acid due to the presence of six double bonds, DHA is susceptible for oxidation, especially in the highly pro-oxidant environment of brain parenchyma. We have recently reported the ability of DHA to regulate the transcriptional program controlling neuronal antioxidant defenses in a hippocampal cell line, especially the glutathione/glutaredoxin system. Within this antioxidant system, DHA was particularly efficient in triggering the upregulation of Gpx4 gene, which encodes for the nuclear, cytosolic, and mitochondrial isoforms of phospholipid-hydroperoxide glutathione peroxidase (PH-GPx/GPx4), the main enzyme protecting cell membranes against lipid peroxidation and capable to reduce oxidized phospholipids in situ. We show here that this novel property of DHA is also significant in the hippocampus of wild-type mice and, to a lesser extent in APP/PS1 transgenic mice, a familial model of Alzheimer's disease. By doing this, DHA stimulates a mechanism to self-protect from oxidative damage even in the neuronal scenario of high aerobic metabolism and in the presence of elevated levels of transition metals, which inevitably favor the generation of reactive oxygen species. Noticeably, DHA also upregulated a Gpx4 CIRT (Cytoplasmic Intron-sequence Retaining Transcripts), a novel Gpx4 splicing variant, harboring part of the first intronic region, which according to the "sentinel RNA hypothesis" would expand the ability of Gpx4 (and DHA) to provide neuronal antioxidant defense independently of conventional nuclear splicing in cellular compartments, like dendritic zones, located away from nuclear compartment. We discuss here, the crucial role of this novel transcriptional regulation triggered by DHA in the context of normal and pathological hippocampal cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phospholipid hydroperoxide glutathione peroxidase plays a role in protecting cancer cells from docosahexaenoic acid-induced cytotoxicity.

Docosahexaenoic acid (DHA; 22:6, n-3) is known to exert cytotoxic effects against various types of tumors via lipid peroxidation. Whereas several enzymes influence the response of cells to oxidative stress, only one enzyme, phospholipid hydroperoxide glutathione peroxidase (GPx-4), directly reduces lipid hydroperoxides in mammalian cells. The present study was designed to examine the involvemen...

متن کامل

Transgenic mice overexpressing glutathione peroxidase 4 are protected against oxidative stress-induced apoptosis.

Glutathione peroxidase 4 (Gpx4) is uniquely involved in the detoxification of oxidative damage to membrane lipids. Our previous studies showed that Gpx4 is essential for mouse survival and that Gpx4 deficiency makes cells vulnerable to oxidative injury. In the present study, we generated two lines of transgenic mice overexpressing Gpx4 (Tg(GPX4) mice) using a genomic clone containing the human ...

متن کامل

Impact of glutathione peroxidase 4 on cell proliferation, angiogenesis and cytokine production in hepatocellular carcinoma

Insufficient supplementation with the micronutrient selenium and persistent hepatic inflammation predispose to hepatocellular carcinoma (HCC). Inflammation-associated reactive oxygen species attack membrane lipids and form lipid hydroperoxides able to propagate oxidative hepatic damage. Selenium-containing enzyme glutathione peroxidase 4 (GPx4) antagonizes this damage by reducing lipid hydroper...

متن کامل

Putative phospholipid hydroperoxide glutathione peroxidase gene from Arabidopsis thaliana induced by oxidative stress.

An Arabidopsis cDNA encoding putative phospholipid hydroperoxide glutathione peroxidase (PHGPX) was cloned and sequenced. The cDNA comprised 803 bp and included an open reading frame which encodes a polypeptide of 169 amino acid residues. The deduced amino acid sequence showed about 80 and 50% homology with plant putative PHGPXs and mammalian PHGPXs, respectively. Southern blot analysis suggest...

متن کامل

Selenoprotein expression in endothelial cells from different human vasculature and species.

Selenium (Se) can protect endothelial cells (EC) from oxidative damage by altering the expression of selenoproteins with antioxidant function such as cytoplasmic glutathione peroxidase (cyGPX), phospholipid hydroperoxide glutathione peroxidase (PHGPX) and thioredoxin reductase (TR). If the role of Se on EC function is to be studied, it is essential that a model system be chosen which reflects s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015